Get this from a library! Freeboard allowances for waves in inland reservoirs. [ Thorndike Saville; Elmo W McClendon; Albert L Cochran]. Derive simple wave prediction methods for British inland reservoirs taking account of E W, & Cochran A L, () Freeboard allowances for waves in Inland. overtopping due to wind-generated waves and reservoir setup. • Relationships in “Freeboard Allowances for Waves in Inland Reservoirs.

Author: Zologrel Dibar
Country: Luxembourg
Language: English (Spanish)
Genre: Medical
Published (Last): 12 August 2017
Pages: 57
PDF File Size: 5.1 Mb
ePub File Size: 11.73 Mb
ISBN: 136-9-44637-734-4
Downloads: 34332
Price: Free* [*Free Regsitration Required]
Uploader: Tygorg

The objective of evaluating the freeboard is to provide needed assurance against overtopping resulting from the following: Laterite Embankment fill at 3.

Freeboard Allowances for Wave in Inland Reservoirs

For the continuity of our calculations we would suppose that the waves have had enough time to attain fpr maximum height and that the condition of the wave height supported is always verified for periods of wind superior to one hour.

As we can see in table 3thirteen percent of the waves go above this height.

A model of the phenomenon caused by wind. The average of rise in water level is a result of the blowing of the wind. The maximum elevation of the water level at the neighborhood of the upstream face is defined by the following formula:.

We consequently conclude that the crest of the structure is sufficiently high to resist any risk resulting from repeated run-up of waves on the crest.

Freeboard Allowances for Wave in Inland Reservoirs

An average depth of 30m has been rwservoirs in the ensuing calculations. The method used here to determine the effective fetch is based on recommendations from USACE [ 56 ]. These latter considerations will take into account the following different parameters. Journal of Engineering and Technology.

Freeboard Allowances for Waves in Inland Reservoirs

The notion of effective fetch has been introduced to take freebaord account the following phenomena:. The development objective of the Lom Pangar Hydropower Project for Cameroon is to increase hydropower generation capacity and reduce seasonal variability of water flow in the Sanaga River and to increase wwaves to electricity [ 78 ]. Determining the wave run-up height. The significant height Hs calculated previously is defined as the average height of waves situated in the upper third.


We would however carry out a study on the sensitivity of the speed of wind. Once the significant height has been calculated, it is possible to determine the frequency of occurrence for a given wave height [ 3 ]. Table 4 and 5 synthesize the results obtained for the laterite backfill embankment as well as the transition rock fill embankment. Freehoard each of the configurations considered, the criteria for expected minimum freeboard in table 1 are respected allowanes all the dams considered.

The value of the rise in water level is calculated by applying the Zuider Zee formula Fell et al. This paper has as purpose to show the calculations done to determine the upstream freeboard the difference in height between the highest level of water upstream and the crest of the embankment for the Lom pangar dam in Cameroon.

Our article is interested in water rise due to wind set-up and wave run-up with respect to the crest of the dam. In order to expose a larger part of the reservoir, we resrvoirs that the longest stretch of water is the direction perpendicular to the dam.

When the waves hit the upstream face of the dam, we assist in an upsurge of the water level due to the fact that the kinetic energy in the waves is transformed into potential energy. When a wave meets a vertical face, the part of the energy transported by the former is dissipated in the form of turbulence whereas the remaining energy is transformed into potential energy thus causing an upsurge in the water level due to wave run-up.

This increase in the height of the waves is called wave run-up. The submersion of an embankment due to waves could affect its lifespan and it is thus necessary to verify the height of the crest of the dam in a way that would protect it against a maximum increase of the water level.


The calculation of minimum freboard for the embankment dam. The fetch represents the distance which separates the dam from the shore where the wind is blowing. This length is called the effective fetch and denoted Fe. Measures carried out in the sea and in the reservoir during tempests have shown that the characteristics of the wave spectrum are as follows:. Historically, we usually work with the significant height. When Z reservoiris The impact height of a wave is a combination of an upsurge in water level and run-up height R reservoiirs to a wave height H in deep water.

Transition embankment at 1. The effective fetch method supposes that a directional diffusion of the wind in cosine from the 10th power, starting from the maximum frequency of the wave freeeboard and taking into account the distance Fi which separates the border of the damevery The latter is defined as the sum of the wind set-up S and the wave run-up R for a given wave height H. Characteristics of wave spectrum. The waves generated by the wind under the hypothesis of great redervoirs do not have the same height.

H is defined as the average height of waves over the percentage of the highest waves. The RCC dam — Calculation of freeboard.

Distance to the dam – reservoir and the calculation of the effective fetch. Many configurations are considered in the presentation of our calculations [ 1 ]. The freeboard f is defined as the difference between the height of the dam crest and the maximum elevation attained by the waves on the upstream face of the dam.

Author: admin